Special uniform approximations of continuous vector-valued functions. Part II: special approximations in $C_{X}(T) \otimes C_{Y}(S)$

Vlad Timofte*
Département de Mathématiques, École Polytechnique, Fédérale de Lausanne, 1015 Lausanne, Switzerland

Received 23 September 2002; accepted in revised form 7 May 2003
Communicated by E.W. Cheney

Abstract

In this paper, which is a continuation of Timofte (J. Approx. Theory 119 (2002) 291-299, we give special uniform approximations of functions from $C_{X \otimes Y}(T \times S)$ and $C_{\infty}(T \times S, X \otimes Y)$ by elements of the tensor products $C_{X}(T) \otimes C_{Y}(S)$, respectively $C_{0}(T, X) \otimes C_{0}(S, Y)$, for topological spaces T, S and Γ-locally convex spaces X, Y (all four being Hausdorff). © 2003 Elsevier Science (USA). All rights reserved.

Keywords: Uniform approximation; Tensor product

1. Introduction

We will use the symbol Γ to denote one of the fields \mathbf{R}, \mathbf{C}. It is known that if T, S are non-empty sets and X, Y are Γ-vector spaces, then the application $\theta: F_{X}(T) \otimes F_{Y}(S) \rightarrow F_{X \otimes Y}(T \times S)$,

$$
\theta\left(\sum_{i \in I} f_{i} \otimes g_{i}\right)(t, s)=\sum_{i \in I} f_{i}(t) \otimes g_{i}(s)
$$

is well defined, linear and injective (where $F_{X}(T)$ denotes the vector space of all X valued functions on T).

From now on, we consider two topological spaces T, S, two Γ-locally convex spaces X, Y (all four Hausdorff) and a Hausdorff locally convex topology on

[^0]$Z:=X \otimes Y$, such that the bilinear application $\otimes: X \times Y \rightarrow Z$ is continuous. Let $M:=T \times S$ denote the product topological space. Since $\theta\left(C_{X}(T) \otimes C_{Y}(S)\right) \subset C_{Z}(M)$, we have by some natural identifications the following inclusions:
\[

$$
\begin{aligned}
& \left(C_{\Gamma}(T) \otimes X\right) \otimes\left(C_{\Gamma}(S) \otimes Y\right) \subset C_{X}(T) \otimes C_{Y}(S) \subset C_{Z}(M) \\
& \left(C_{0}(T, \Gamma) \otimes X\right) \otimes\left(C_{0}(S, \Gamma) \otimes Y\right) \subset C_{0}(T, X) \otimes C_{0}(S, Y) \subset C_{\infty}(M, Z)
\end{aligned}
$$
\]

For abbreviation, we will use the following notations:

$$
E:=\left(C_{\Gamma}(T) \otimes X\right) \otimes\left(C_{\Gamma}(S) \otimes Y\right), \quad E_{0}:=\left(C_{0}(T, \Gamma) \otimes X\right) \otimes\left(C_{0}(S, \Gamma) \otimes Y\right)
$$

By the natural algebraical isomorphisms

$$
E \simeq\left(C_{\Gamma}(T) \otimes C_{\Gamma}(S)\right) \otimes Z, \quad E_{0} \simeq\left(C_{0}(T, \Gamma) \otimes C_{0}(S, \Gamma)\right) \otimes Z
$$

we will identify the corresponding vector spaces. Various results concerning the uniform density of $C_{\Gamma}(T) \otimes X$ in $C_{X}(T)$, of $C_{X}(T) \otimes C_{Y}(S)$ in $C_{Z}(M)$ and Weierstrass-Stone's type theorems are known (see [1-6]). Therefore, we will restrict our attention to special uniform approximations in $C_{Z}(M)$ and in $C_{\infty}(M, Z)$. This concept was introduced in [7].

Definition 1. Let $u \in C_{Z}(M)$ (respectively, $u \in C_{\infty}(M, Z)$) and the neighborhood $W \in \mathscr{V}_{Z}(0)$ be fixed. A function
$u_{W} \in C_{X}(T) \otimes C_{Y}(S)$ (respectively, $\left.u_{W} \in C_{0}(T, X) \otimes C_{0}(S, Y)\right)$
is said to be a special W-uniform approximant of u, if and only if u_{W} satisfies $\left(u-u_{W}\right)(M) \subset W$ and the following constraints:

$$
\begin{aligned}
& u_{W}(M) \subset \operatorname{co}(u(M))\left(\text { respectively }, u_{W}(M) \subset \operatorname{co}(u(M) \cup\{0\})\right), \\
& \quad \operatorname{supp} u_{W} \subset u^{-1}(Z \backslash\{0\}) .
\end{aligned}
$$

If $X=\Gamma$ and $S=\{s\}$ is a singleton, then M is homeomorphic to T. Since $Z \simeq Y$ as locally convex spaces, using the algebraical isomorphisms

$$
\begin{aligned}
& C_{Z}(M) \simeq C_{Y}(T), \quad C_{X}(T) \otimes C_{Y}(S) \simeq C_{\Gamma}(T) \otimes Y, \\
& C_{\infty}(M, Z) \simeq C_{\infty}(T, Y), \quad C_{0}(T, X) \otimes C_{0}(S, Y) \simeq C_{0}(T, \Gamma) \otimes Y,
\end{aligned}
$$

reduces the above definition to the notion studied in [7]. To make our exposition selfcontained, we repeat a needed result (see [7, Theorem 1, p. 293]) without proof, in a particular setting:

Theorem 1. If T is compact, then for all $u \in C_{X}(T)$ and $W \in \mathscr{V}_{X}(0)$, there exists an approximant $u_{W} \in C_{\Gamma}(T) \otimes X$, such that:
(1) $\left(u-u_{W}\right)(T) \subset W, u_{W}(T) \subset \operatorname{co}(u(T))$, $\operatorname{supp} u_{W} \subset u^{-1}(X \backslash\{0\})$,
(2) $u_{W}=\sum_{i \in I} \varphi_{i}(\cdot) x_{i}$ for some finite set $I,\left(x_{i}\right)_{i \in I} \subset u(T)$ and $\left(\varphi_{i}\right)_{i \in I}$ p.u. (partition of unity) on T.

2. Special approximations in $C_{Z}(M)$

2.1. The compact case of $E \subset C_{X}(T) \otimes C_{Y}(S) \subset C_{Z}(M)$

Only in this subsection we assume T and S to be compact spaces.
Lemma 1. If $K \subset D \subset M, K$ is closed and D is open, then for every $\varepsilon \in(0,1)$, there exists $\omega \in C_{\mathbf{R}}(T) \otimes C_{\mathbf{R}}(S)$, such that

$$
0 \leqslant \omega<1, \quad \omega(\xi)>1-\varepsilon \quad \forall \xi \in K, \quad \operatorname{supp} \omega \subset D
$$

Proof. Obviously, $\exists\left(U_{i}\right)_{i \in I}, \exists\left(V_{i}\right)_{i \in I}$ finite families of open subsets of T, respectively S, such that $K \subset \bigcup_{i \in I}\left(U_{i} \times V_{i}\right) \subset \bigcup_{i \in I}\left(\overline{U_{i}} \times \overline{V_{i}}\right) \subset D$. Since $\quad M=(M \backslash K) \cup$ $\bigcup_{i \in I}\left(U_{i} \times V_{i}\right)$, using a p.u. subordinated to the previous open covering gives that $\exists\left(\varphi_{i}\right)_{i \in I} \subset C_{\mathbf{R}}(M)_{+}, \quad$ such that $\sum_{i \in I} \varphi_{i} \leqslant 1, \quad \sum_{i \in I} \varphi_{i_{\mid K}} \equiv 1$ and $\operatorname{supp} \varphi_{i} \subset U_{i} \times$ $V_{i} \forall i \in I$. Set $\delta:=\frac{\varepsilon}{3}, \rho:=\frac{\varepsilon}{3|I|}=\frac{\delta}{|I|}$ and fix $i \in I$. By Stone-Weierstrass' theorem, $\exists \psi_{i} \in C_{\mathbf{R}}(T) \otimes C_{\mathbf{R}}(S)$, such that $\left\|(1-\delta) \varphi_{i}+\rho / 2-\psi_{i}\right\|_{\infty}<\rho / 2$. Therefore, on M we have the pointwise inequalities $0 \leqslant(1-\delta) \varphi_{i}<\psi_{i}<(1-\delta) \varphi_{i}+\rho$. Now consider the compact set $K_{i}:=\left\{\xi \in M \mid \varphi_{i}(\xi) \geqslant \rho\right\} \subset \operatorname{supp} \varphi_{i} \subset U_{i} \times V_{i}$. By Urysohn's lemma, $\exists a_{i} \in C_{\mathbf{R}}(T), b_{i} \in C_{\mathbf{R}}(S)$, such that $0 \leqslant a_{i} \leqslant 1$, $0 \leqslant b_{i} \leqslant 1, \operatorname{supp} a_{i} \subset U_{i}$, supp $b_{i} \subset V_{i}, \quad\left(a_{i} \otimes b_{i}\right)_{\left.\right|_{K_{i}}} \equiv 1$. Define $\quad \omega_{i}:=\left(a_{i} \otimes b_{i}\right) \psi_{i}$ $\in C_{\mathbf{R}}(T) \otimes C_{\mathbf{R}}(S), \omega:=\sum_{i \in I} \omega_{i} \in C_{\mathbf{R}}(T) \otimes C_{\mathbf{R}}(S)$. We obviously have supp $\omega \subset \bigcup_{i \in I}$ $\operatorname{supp} \omega_{i} \subset \bigcup_{i \in I} \operatorname{supp}\left(a_{i} \otimes b_{i}\right) \subset \bigcup_{i \in I}\left(U_{i} \times V_{i}\right) \subset D \quad$ and $\quad 0 \leqslant \omega=\sum_{i \in I} \omega_{i} \leqslant$ $\sum_{i \in I} \psi_{i}<(1-\delta) \sum_{i \in I} \varphi_{i}+\rho|I| \leqslant 1$. The proof is completed by showing that $\omega_{\left.\right|_{K}}>1-\varepsilon$. Fix $\quad \xi \in K$ and consider $\quad I_{\xi}:=\left\{i \in I \mid \xi \in K_{i}\right\}=\left\{i \in I \mid \varphi_{i}(\xi) \geqslant \rho\right\}$. It follows that $\omega(\xi) \geqslant \sum_{i \in I_{\xi}} \omega_{i}(\xi)=\sum_{i \in I_{\xi}} \psi_{i}(\xi)=\sum_{i \in I} \psi_{i}(\xi)-\sum_{i \in I I_{\xi}} \psi_{i}(\xi)>$ $(1-\delta) \sum_{i \in I} \varphi_{i}(\xi)-\sum_{i \in I I_{\xi}}\left[(1-\delta) \varphi_{i}(\xi)+\rho\right] \geqslant 1-\delta-[(1-\delta) \rho+\rho] \cdot|I|=1-$ $\delta-\delta(2-\delta)>1-3 \delta=1-\varepsilon$. Hence, ω satisfies all required properties.

Theorem 2. If $u \in C_{Z}(M)$, then for every $W \in \mathscr{V}_{Z}(0)$, there exists an approximant $u_{W} \in E$, such that

$$
\left(u-u_{W}\right)(M) \subset W, \quad u_{W}(M) \subset \operatorname{co}(u(M)), \operatorname{supp} u_{W} \subset u^{-1}(Z \backslash\{0\})
$$

Proof. Fix $W \in \mathscr{V}_{Z}(0)$ and choose $W_{0} \in \mathscr{V}_{Z}(0)$, with W_{0} balanced, convex and $2 W_{0} \subset W$. By Theorem 1, $\exists v=\sum_{i \in I} \varphi_{i}(\cdot) z_{i} \in C_{\Gamma}(M) \otimes Z$, such that $(u-$ $v)(M) \subset W_{0}, v(M) \subset \operatorname{co}(u(M)), \operatorname{supp} v \subset u^{-1}(Z \backslash\{0\}),\left(z_{i}\right)_{i \in I} \subset u(M),\left(\varphi_{i}\right)_{i \in I}$ p.u. on M for some finite set I. Since the set $A:=\operatorname{co}(u(M))$ is bounded in $Z, \exists \varepsilon \in(0,1)$, with $2 \varepsilon A \subset W_{0}$. For every fixed $i \in I$, by Stone-Weierstrass' theorem, $\exists \psi_{i} \in C_{\mathbf{R}}(T) \otimes C_{\mathbf{R}}(S)$, such that $\left\|(1-\varepsilon) \varphi_{i}+\frac{\varepsilon}{2|I|}-\psi_{i}\right\|_{\infty}<\frac{\varepsilon}{2|I|}$. Therefore, on M we have the pointwise inequalities $0 \leqslant(1-\varepsilon) \varphi_{i}<\psi_{i}<(1-\varepsilon) \varphi_{i}+\varepsilon /|I|$, and so $1-\varepsilon<\sum_{i \in I} \psi_{i}<1$. Fix $z \in u(M)$ and define $w_{z}:=\sum_{i \in I} \psi_{i}(\cdot)\left(z_{i}-z\right)+z=\sum_{i \in I} \psi_{i}(\cdot) z_{i}+\left(1-\sum_{i \in I} \psi(\cdot)\right) z$. Thus, $w_{z} \in E$, $w_{z}(M) \subset \operatorname{co}(u(M))$. We next show that $\left(w_{z}-v\right)(M) \subset W_{0}$. For every
$\xi \in M$, we have $\left(w_{z}-v\right)(\xi)=\sum_{i \in I}\left(\psi_{i}(\xi)-\varphi_{i}(\xi)\right) z_{i}+\left(1-\sum_{i \in I} \psi_{i}(\xi)\right) z=$ $\sum_{i \in I}\left[\psi_{i}(\xi)-(1-\varepsilon) \varphi_{i}(\xi)\right] z_{i}-\quad \varepsilon \sum_{i \in I} \varphi_{i}(\xi) z_{i}+\left(1-\sum_{i \in I} \psi_{i}(\xi)\right) z \in \sum_{i \in I}\left[\psi_{i}(\xi)-\right.$ $\left.(1-\varepsilon) \varphi_{i}(\xi)\right] A-\varepsilon A+\left(1-\sum_{i \in I} \psi_{i}(\xi)\right) A=\varepsilon A-\varepsilon A \subset 2^{-1}\left(W_{0}-W_{0}\right)=W_{0}$, since the sets A, W_{0} are convex and W_{0} is balanced. As $\left(w_{z}-v\right)(M) \subset W_{0}$, we get $(u-$ $\left.w_{z}\right)(M) \subset(u-v)(M)+\left(v-w_{z}\right)(M) \subset W_{0}-W_{0}=2 W_{0} \subset W$. We need to consider two cases:
(i) If $0 \notin u(M)$, then $u^{-1}(Z \backslash\{0\})=M \supset \operatorname{supp} w_{z}$, and so $u_{W}:=w_{z}$ satisfies all required properties.
(ii) If $0 \in u(M)$, since $(1-\varepsilon) \varphi_{i}<\psi_{i} \forall i \in I$ and M is compact, it follows that $\exists \delta \in(0,1)$, such that $(1-\varepsilon) \varphi_{i}<(1-\delta) \psi_{i} \forall i \in I$ on M. Since $\operatorname{supp} v \subset u^{-1}(Z \backslash\{0\})$, Lemma 1 shows that $\exists \omega \in C_{\mathbf{R}}(T) \otimes C_{\mathbf{R}}(S)$, with $0 \leqslant \omega<1, \omega(\xi)>1-$ $\delta \forall \xi \in \operatorname{supp} v, \operatorname{supp} \omega \subset u^{-1}(Z \backslash\{0\})$. Now define $u_{W}:=\omega \cdot w_{z} \in\left(C_{\Gamma}(T) \otimes X\right) \otimes$ $\left(C_{\Gamma}(S) \otimes Y\right)$. Thus, $\quad u_{W}(M) \subset \omega(M) \cdot w_{z}(M) \subset[0,1) \cdot \operatorname{co}(u(M)) \subset \operatorname{co}(u(M))$, $\operatorname{supp} u_{W} \subset \operatorname{supp} \omega \subset u^{-1}(Z \backslash\{0\})$. It remains to prove that $\left(u-u_{W}\right)(M) \subset W$. Fix $\xi \in M$. There are two subcases:
(a) If $\xi \in \operatorname{supp} v$, then we clearly have on M the pointwise inequalities (1غ) $\varphi_{i}(\xi)<(1-\delta) \psi_{i}(\xi)<\omega(\xi)\left((1-\varepsilon) \varphi_{i}(\xi)+\varepsilon /|I|\right) \quad \forall i \in I$, and so $\omega(\xi)=$ $\omega(\xi) \sum_{i \in I}\left((1-\varepsilon) \varphi_{i}(\xi)+\varepsilon /|I|\right)>(1-\varepsilon) \sum_{i \in I} \varphi_{i}(\xi)=1-\varepsilon$. Hence, $\left(u_{W}-v\right)(\xi)=$ $\left(\omega w_{z}-v\right)(\xi)=\sum_{i \in I}\left[\omega(\xi) \psi_{i}(\xi)-(1-\varepsilon) \varphi_{i}(\xi)\right] z_{i}-\varepsilon \sum_{i \in I} \varphi_{i}(\xi) z_{i}+\omega(\xi)(1-$ $\left.\sum_{i \in I} \psi_{i}(\xi)\right) z \in \sum_{i \in I}\left[\omega(\xi) \psi_{i}(\xi)-(1-\varepsilon) \varphi_{i}(\xi)\right] A-\varepsilon A+\omega(\xi)\left(1-\sum_{i \in I} \psi_{i}(\xi)\right) A=$ $[\omega(\xi)-(1-\varepsilon)] A-\varepsilon A \subset \varepsilon A-\varepsilon A \subset 2^{-1}\left(W_{0}-W_{0}\right)=W_{0}$, and so $\left(u-u_{W}\right)(\xi)=(u-$ $v)(\xi)+\left(v-u_{W}\right)(\xi) \in W_{0}-W_{0}=2 W_{0} \subset W$. We conclude that $\left(u-u_{W}\right)$ $(\operatorname{supp} v) \subset W$.
(b) If $\xi \in M \backslash \operatorname{supp} v$, then it is clear that $u(\xi)=(u-v)(\xi) \in W_{0}, u_{W}(\xi)=\omega(\xi)\left(w_{z}-\right.$ $v)(\xi) \in \omega(\xi) W_{0} \subset W_{0}$. Thus, $\quad\left(u-u_{W}\right)(\xi) \in W_{0}-W_{0}=2 W_{0} \subset W$. Hence, $\quad(u-$ $\left.u_{W}\right)(M \backslash \operatorname{supp} v) \subset W$.

From (a) and (b), it follows that $\left(u-u_{W}\right)(M) \subset W$. Therefore, u_{W} satisfies all required properties.

In the particular case $X=Y=\Gamma$ we get
Corollary 1. For every function $u \in C_{\Gamma}(T \times S)$, there is a sequence $\left(u_{n}\right)_{n \geqslant 1} \subset C_{\Gamma}(T) \otimes C_{\Gamma}(S)$, such that $u_{n} \xrightarrow{\text { u. }} u$ and

$$
u_{n}(T \times S) \subset \operatorname{co}(u(T \times S)), \quad \operatorname{supp} u_{n} \subset u^{-1}(\Gamma \backslash\{0\}) \forall n \in \mathbf{N}^{*} .
$$

2.2. The case of $E_{0} \subset C_{0}(T, X) \otimes C_{0}(S, Y) \subset C_{\infty}(M, Z)$

Theorem 3. If $u \in C_{\infty}(M, Z)$, then for all $W \in \mathscr{V}_{Z}(0)$ and compact $K \subset M$, there exists an approximant $u_{W, K} \in E_{0}$, such that

$$
\begin{array}{ll}
\left(u-u_{W, K}\right)(M) \subset W, & u_{W, K}(M) \subset \operatorname{co}(u(M) \cup\{0\}), \\
u_{W, K}(K) \subset \operatorname{co}(u(M)), & \operatorname{supp} u_{W, K} \subset u^{-1}(Z \backslash\{0\}) .
\end{array}
$$

Proof. We can assume that $u \not \equiv 0$, that is $\exists \xi_{0} \in M$, with $u\left(\xi_{0}\right) \neq 0$. Fix $W \in \mathscr{V}_{Z}(0), K$ compact in M and set $F:=K$ if $0 \notin u(K)$, and $F:=\left\{\xi_{0}\right\}$ if $0 \in u(K)$. Since $0 \notin u(F)$ and $u(F)$ compact, $\exists W_{0} \in \mathscr{V}_{Z}(0)$, such that $W_{0} \subset W, W_{0}$ open and convex and $u(F) \cap W_{0}=$ \emptyset, that is $F \subset u^{-1}\left(Z \backslash W_{0}\right)$. For every $A \subset M$, set $A_{T}:=\pi_{1}(A), A_{S}:=\pi_{2}(A), A_{\pi}:=$ $A_{T} \times A_{S}$. For $H:=u^{-1}\left(Z \backslash W_{0}\right), D:=u^{-1}\left(Z \backslash 2^{-1} \overline{W_{0}}\right), L:=u^{-1}\left(Z \backslash 2^{-1} W_{0}\right)$, we have $F \subset H_{\pi} \subset D_{\pi} \subset L_{\pi} \subset M, H_{\pi}$ and L_{π} are compact, D_{π} is open. Since $L_{\pi}=L_{T} \times L_{S}$ and $u_{L_{\pi}} \in C_{Z}\left(L_{\pi}\right)$, by Theorem $2, \exists v=\sum_{i \in I} a_{i} \otimes b_{i} \in C_{X}\left(L_{T}\right) \otimes C_{Y}\left(L_{S}\right)$, such that ($u-$ $v)\left(L_{\pi}\right) \subset W_{0}, v\left(L_{\pi}\right) \subset \operatorname{co}\left(u\left(L_{\pi}\right)\right)$ and $\operatorname{supp} v \subset L_{\pi} \cap u^{-1}(Z \backslash\{0\})$. Since H_{T}, L_{T} are compact, D_{T} is open and $H_{T} \subset D_{T} \subset L_{T} \subset T$, by Urysohn's lemma, $\exists \varphi: T \rightarrow[0,1]$ continuous, with $\varphi_{\left.\right|_{H_{T}}} \equiv 1, \operatorname{supp} \varphi \subset D_{T}$. Similarly, $\exists \psi: S \rightarrow[0,1]$ continuous, such that $\psi_{\left.\right|_{H_{S}}} \equiv 1$, supp $\psi \subset D_{S}$. Define $\omega:=\varphi \otimes \psi: M \rightarrow[0,1]$. Hence, $\omega_{\left.\right|_{H_{\pi}}} \equiv 1$ and $\operatorname{supp} \omega \subset D_{\pi}$. Finally, define the function

$$
w: M \rightarrow Z, w(\xi)= \begin{cases}(\omega v)(\xi) & \text { if } \xi \in L_{\pi} \\ 0 & \text { if } \xi \in M \backslash L_{\pi}\end{cases}
$$

Obviously, \quad supp $w \subset \operatorname{supp} v \subset u^{-1}(Z \backslash\{0\}), \quad w_{\left.\right|_{H_{\pi}}}=v_{\left.\right|_{H_{\pi}}}, \quad w(F)=v(F) \subset \operatorname{co}(u(M))$, $w(M) \subset \omega\left(L_{\pi}\right) \cdot v\left(L_{\pi}\right) \cup\{0\} \subset[0,1] \cdot \operatorname{co}(u(M)) \subset \operatorname{co}(u(M) \cup\{0\})$ and $w \in E_{0}$. We next show that $(u-w)(M) \subset W_{0}$. We clearly have

$$
(u-w)(M)=(u-w)\left(H_{\pi}\right) \cup(u-w)\left(L_{\pi} \backslash H_{\pi}\right) \cup(u-w)\left(M \backslash L_{\pi}\right) .
$$

But $(u-w)\left(H_{\pi}\right)=(u-v)\left(H_{\pi}\right) \subset W_{0}$ and $(u-w)\left(M \backslash L_{\pi}\right)=u\left(M \backslash L_{\pi}\right) \subset u(M \backslash L) \subset$ $2^{-1} W_{0} \subset W_{0}$. For $\quad \xi \in L_{\pi} \backslash H_{\pi},(u-w)(\xi)=(1-\omega(\xi)) u(\xi)+\omega(\xi)(u-v)(\xi) \in(1-$ $\omega(\xi)) W_{0}+\omega(\xi) W_{0}=W_{0}$. Hence, $(u-w)(M) \subset W_{0} \subset W$. If $F \neq K$, then $0 \in u(K)$, and so $w(K) \subset w(M) \subset \operatorname{co}(u(M) \cup\{0\})=\operatorname{co}(u(M))$. We conclude that $u_{W, K}:=w$ satisfies all required properties.

In the particular case $X=Y=\Gamma$ we get
Corollary 2. If $u \in C_{\infty}(T \times S, \Gamma)$, then for every compact $K \subset M$, there is a sequence $\left(u_{n}\right)_{n \geqslant 1} \subset C_{0}(T, \Gamma) \otimes C_{0}(S, \Gamma)$, such that $u_{n} \xrightarrow{\mathrm{u}} u$ and

$$
\begin{aligned}
& u_{n}(T \times S) \subset \operatorname{co}(u(T \times S) \cup\{0\}), \quad u_{n}(K) \subset \operatorname{co}(u(T \times S)), \\
& \operatorname{supp} u_{n} \subset u^{-1}(\Gamma \backslash\{0\}) \forall n \in \mathbf{N}^{*} .
\end{aligned}
$$

2.3. An application: the density of $C_{0}(T, X) \otimes C_{0}(S, Y)$ in $C_{0}(M, Z)$ with respect to the inductive limit topology

Theorem 4. If $u \in C_{0}(M, Z)$, then for every $V \in \mathscr{V}_{C_{0}(M, Z)}(0)$ with respect to the inductive limit topology, there exists $u_{V} \in E_{0}$, such that

$$
u-u_{V} \in V, \quad u_{V}(M) \subset \operatorname{co}(u(M)), \operatorname{supp} u_{V} \subset u^{-1}(Z \backslash\{0\}) .
$$

Proof. We can assume that $0 \in u(M)$, since otherwise M is compact and the conclusion is given by Theorem 2. Fix $V \in \mathscr{V}_{C_{0}(M, Z)}(0)$ and set $K:=$
$\operatorname{supp} u, C_{0}(M, Z)_{K}:=\left\{v \in C_{0}(M, Z) \mid \operatorname{supp} v \subset K\right\}$. Since $V \cap C_{0}(M, Z)_{K}$ is a neighborhood of the origin in $C_{0}(M, Z)_{K}$ with respect to the uniform con vergence topology, it follows that $\exists W \in \mathscr{V}_{Z}(0)$, with $\left\{v \in C_{0}(M\right.$, $\left.Z)_{K} \mid v(M) \subset W\right\} \subset V \cap C_{0}(M, Z)_{K}$. Now Theorem 3 shows that $\exists v \in E_{0}$, such that $(u-v)(M) \subset W, v(M) \subset \operatorname{co}(u(M) \cup\{0\})=\operatorname{co}(u(M))$, supp $v \subset u^{-1}(Z \backslash\{0\}) \subset K$. We thus get $u-v \in C_{0}(M, Z)_{K},(u-v)(M) \subset W$, and so $u-v \in V$. Hence, $u_{V}:=v$ satisfies all required properties.

Corollary 3. E_{0}, and consequently $C_{0}(T, X) \otimes C_{0}(S, Y)$, is dense in $C_{0}(M, Z)$ with respect to the inductive limit topology. Moreover, if X and Y are metrizable, then this density is sequential.

References

[1] M. Chao-Lin, Sur l'approximation uniforme des fonctions continues, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985) 349-350.
[2] S. Machado, On Bishop's generalization of the Weierstrass-Stone theorem, Indag. Math. 39 (1977) 218-224.
[3] J.B. Prolla, Approximation of Vector Valued Functions, North-Holland Publishing Co., Amsterdam, New York, Oxford, 1977.
[4] J.B. Prolla, Uniform approximation: the non-locally convex case, Rend. Circ. Mat. Palermo(2) 42 (1993) 93-105.
[5] J.B. Prolla, On the Weierstrass-Stone theorem, J. Approx. Theory 78 (1994) 299-313.
[6] A.H. Shuchat, Approximation of vector-valued continuous functions, Proc. Amer. Math. Soc. 31 (1972) 97-103.
[7] V. Timofte, Special uniform approximations of continuous vector-valued functions. Part I: approximations of functions from $C_{X}(T)$, J. Approx. Theory 119 (2002) 291-299.

[^0]: *Fax: 0041-21-693-5839.
 E-mail address: vlad.timofte@epfl.ch.

