

JOURNAL OF Approximation Theory

Journal of Approximation Theory 123 (2003) 270-275

http://www.elsevier.com/locate/jat

Special uniform approximations of continuous vector-valued functions. Part II: special approximations in $C_X(T) \otimes C_Y(S)$

Vlad Timofte*

Département de Mathématiques, École Polytechnique, Fédérale de Lausanne, 1015 Lausanne, Switzerland

Received 23 September 2002; accepted in revised form 7 May 2003

Communicated by E.W. Cheney

Abstract

In this paper, which is a continuation of Timofte (J. Approx. Theory 119 (2002) 291–299, we give special uniform approximations of functions from $C_{X \otimes Y}(T \times S)$ and $C_{\infty}(T \times S, X \otimes Y)$ by elements of the tensor products $C_X(T) \otimes C_Y(S)$, respectively $C_0(T, X) \otimes C_0(S, Y)$, for topological spaces T, S and Γ -locally convex spaces X, Y (all four being Hausdorff). \mathbb{C} 2003 Elsevier Science (USA). All rights reserved.

Keywords: Uniform approximation; Tensor product

1. Introduction

We will use the symbol Γ to denote one of the fields **R**, **C**. It is known that if *T*, *S* are non-empty sets and *X*, *Y* are Γ -vector spaces, then the application $\theta: F_X(T) \otimes F_Y(S) \to F_{X \otimes Y}(T \times S)$,

$$\theta\left(\sum_{i\in I}f_i\otimes g_i\right)(t,s)=\sum_{i\in I}f_i(t)\otimes g_i(s)$$

is well defined, linear and injective (where $F_X(T)$ denotes the vector space of all X-valued functions on T).

From now on, we consider two topological spaces T, S, two Γ -locally convex spaces X, Y (all four Hausdorff) and a Hausdorff locally convex topology on

E-mail address: vlad.timofte@epfl.ch.

^{*}Fax: 0041-21-693-5839.

 $Z := X \otimes Y$, such that the bilinear application $\otimes : X \times Y \to Z$ is continuous. Let $M := T \times S$ denote the product topological space. Since $\theta(C_X(T) \otimes C_Y(S)) \subset C_Z(M)$, we have by some natural identifications the following inclusions:

$$(C_{\Gamma}(T)\otimes X)\otimes (C_{\Gamma}(S)\otimes Y)\subset C_{X}(T)\otimes C_{Y}(S)\subset C_{Z}(M),$$

$$(C_0(T,\Gamma)\otimes X)\otimes (C_0(S,\Gamma)\otimes Y)\subset C_0(T,X)\otimes C_0(S,Y)\subset C_\infty(M,Z).$$

For abbreviation, we will use the following notations:

$$E \coloneqq (C_{\Gamma}(T) \otimes X) \otimes (C_{\Gamma}(S) \otimes Y), \qquad E_0 \coloneqq (C_0(T, \Gamma) \otimes X) \otimes (C_0(S, \Gamma) \otimes Y).$$

By the natural algebraical isomorphisms

 $E \simeq (C_{\Gamma}(T) \otimes C_{\Gamma}(S)) \otimes Z, \quad E_0 \simeq (C_0(T, \Gamma) \otimes C_0(S, \Gamma)) \otimes Z,$

we will identify the corresponding vector spaces. Various results concerning the uniform density of $C_{\Gamma}(T) \otimes X$ in $C_X(T)$, of $C_X(T) \otimes C_Y(S)$ in $C_Z(M)$ and Weierstrass–Stone's type theorems are known (see [1–6]). Therefore, we will restrict our attention to special uniform approximations in $C_Z(M)$ and in $C_{\infty}(M, Z)$. This concept was introduced in [7].

Definition 1. Let $u \in C_Z(M)$ (respectively, $u \in C_\infty(M, Z)$) and the neighborhood $W \in \mathscr{V}_Z(0)$ be fixed. A function

$$u_W \in C_X(T) \otimes C_Y(S)$$
 (respectively, $u_W \in C_0(T, X) \otimes C_0(S, Y)$)

is said to be a special W-uniform approximant of u, if and only if u_W satisfies $(u - u_W)(M) \subset W$ and the following constraints:

$$u_W(M) \subset \operatorname{co}(u(M))$$
 (respectively, $u_W(M) \subset \operatorname{co}(u(M) \cup \{0\})$),
supp $u_W \subset u^{-1}(Z \setminus \{0\})$.

If $X = \Gamma$ and $S = \{s\}$ is a singleton, then M is homeomorphic to T. Since $Z \simeq Y$ as locally convex spaces, using the algebraical isomorphisms

$$C_Z(M) \simeq C_Y(T), \quad C_X(T) \otimes C_Y(S) \simeq C_{\Gamma}(T) \otimes Y,$$
$$C_{\infty}(M, Z) \simeq C_{\infty}(T, Y), \quad C_0(T, X) \otimes C_0(S, Y) \simeq C_0(T, \Gamma) \otimes Y$$

reduces the above definition to the notion studied in [7]. To make our exposition selfcontained, we repeat a needed result (see [7, Theorem 1, p. 293]) without proof, in a particular setting:

Theorem 1. If T is compact, then for all $u \in C_X(T)$ and $W \in \mathscr{V}_X(0)$, there exists an approximant $u_W \in C_{\Gamma}(T) \otimes X$, such that:

- (1) $(u u_W)(T) \subset W$, $u_W(T) \subset \operatorname{co}(u(T))$, $\operatorname{supp} u_W \subset u^{-1}(X \setminus \{0\})$,
- (2) $u_W = \sum_{i \in I} \varphi_i(\cdot) x_i$ for some finite set I, $(x_i)_{i \in I} \subset u(T)$ and $(\varphi_i)_{i \in I}$ p.u. (partition of unity) on T.

2. Special approximations in $C_Z(M)$

2.1. The compact case of $E \subset C_X(T) \otimes C_Y(S) \subset C_Z(M)$

Only in this subsection we assume T and S to be compact spaces.

Lemma 1. If $K \subset D \subset M$, K is closed and D is open, then for every $\varepsilon \in (0, 1)$, there exists $\omega \in C_{\mathbf{R}}(T) \otimes C_{\mathbf{R}}(S)$, such that

 $0 \leq \omega < 1$, $\omega(\xi) > 1 - \varepsilon \quad \forall \xi \in K$, supp $\omega \subset D$.

Proof. Obviously, $\exists (U_i)_{i \in I}, \exists (V_i)_{i \in I}$ finite families of open subsets of T, respectively S, such that $K \subset \bigcup_{i \in I} (U_i \times V_i) \subset \bigcup_{i \in I} (\overline{U_i} \times \overline{V_i}) \subset D$. Since $M = (M \setminus K) \cup$ $\bigcup_{i \in I} (U_i \times V_i)$, using a p.u. subordinated to the previous open covering gives that $\exists (\varphi_i)_{i \in I} \subset C_{\mathbf{R}}(M)_+, \text{ such that } \sum_{i \in I} \varphi_i \leq 1, \sum_{i \in I} \varphi_{i_{i_{\kappa}}} \equiv 1 \text{ and } \operatorname{supp} \varphi_i \subset U_i \times U_i \leq 0$ $V_i \forall i \in I$. Set $\delta := \frac{\varepsilon}{3}, \rho := \frac{\varepsilon}{3|I|} = \frac{\delta}{|I|}$ and fix $i \in I$. By Stone-Weierstrass' theorem, $\exists \psi_i \in C_{\mathbf{R}}(T) \otimes C_{\mathbf{R}}(S)$, such that $||(1-\delta)\varphi_i + \rho/2 - \psi_i||_{\infty} < \rho/2$. Therefore, on *M* we have the pointwise inequalities $0 \leq (1 - \delta)\varphi_i < \psi_i < (1 - \delta)\varphi_i + \rho$. Now consider the compact set $K_i := \{\xi \in M \mid \varphi_i(\xi) \ge \rho\} \subset \operatorname{supp} \varphi_i \subset U_i \times V_i$. Urysohn's lemma, $\exists a_i \in C_{\mathbf{R}}(T), b_i \in C_{\mathbf{R}}(S)$, such that $0 \leq a_i \leq 1$, By $0 \leq b_i \leq 1$, supp $a_i \subset U_i$, supp $b_i \subset V_i$, $(a_i \otimes b_i)_{|_{K_i}} \equiv 1$. Define $\omega_i := (a_i \otimes b_i)\psi_i$ $\in C_{\mathbf{R}}(T) \otimes C_{\mathbf{R}}(S), \omega := \sum_{i \in I} \omega_i \in C_{\mathbf{R}}(T) \otimes C_{\mathbf{R}}(S)$. We obviously have supp $\omega \subset \bigcup_{i \in I} \omega_i \in C_{\mathbf{R}}(T)$ $\sup \omega_i \subset \bigcup_{i \in I} \sup (a_i \otimes b_i) \subset \bigcup_{i \in I} (U_i \times V_i) \subset D \quad \text{and} \quad 0 \leq \omega = \sum_{i \in I} \omega_i \leq \omega_i \leq \omega_i$ $\sum_{i \in I} \psi_i < (1 - \delta) \sum_{i \in I} \varphi_i + \rho |I| \leq 1$. The proof is completed by showing that $\omega_{|_{K}} > 1 - \varepsilon$. Fix $\xi \in K$ and consider $I_{\xi} := \{i \in I \mid \xi \in K_i\} = \{i \in I \mid \varphi_i(\xi) \ge \rho\}$. It that $\omega(\xi) \ge \sum_{i \in I_{\tilde{e}}} \omega_i(\xi) = \sum_{i \in I_{\tilde{e}}} \psi_i(\xi) = \sum_{i \in I} \psi_i(\xi) - \sum_{i \in I \setminus I_{\tilde{e}}} \psi_i(\xi) >$ follows $(1 - \delta) \sum_{i \in I} \varphi_i(\xi) - \sum_{i \in I \setminus I_i} [(1 - \delta)\varphi_i(\xi) + \rho] \ge 1 - \delta - [(1 - \delta)\rho + \rho] \cdot |I| = 1 - \delta$ $\delta - \delta(2 - \delta) > 1 - 3\delta = 1 - \varepsilon$. Hence, ω satisfies all required properties. \Box

Theorem 2. If $u \in C_Z(M)$, then for every $W \in \mathscr{V}_Z(0)$, there exists an approximant $u_W \in E$, such that

$$(u-u_W)(M) \subset W, \quad u_W(M) \subset \operatorname{co}(u(M)), \operatorname{supp} u_W \subset u^{-1}(Z \setminus \{0\}).$$

Proof. Fix $W \in \mathscr{V}_Z(0)$ and choose $W_0 \in \mathscr{V}_Z(0)$, with W_0 balanced, convex and $2W_0 \subset W$. By Theorem 1, $\exists v = \sum_{i \in I} \varphi_i(\cdot) z_i \in C_{\Gamma}(M) \otimes Z$, such that $(u - v)(M) \subset W_0$, $v(M) \subset \operatorname{co}(u(M))$, supp $v \subset u^{-1}(Z \setminus \{0\})$, $(z_i)_{i \in I} \subset u(M)$, $(\varphi_i)_{i \in I}$ p.u. on M for some finite set I. Since the set $A := \operatorname{co}(u(M))$ is bounded in $Z, \exists \varepsilon \in (0, 1)$, with $2\varepsilon A \subset W_0$. For every fixed $i \in I$, by Stone–Weierstrass' theorem, $\exists \psi_i \in C_{\mathbf{R}}(T) \otimes C_{\mathbf{R}}(S)$, such that $||(1 - \varepsilon)\varphi_i + \frac{\varepsilon}{2|I|} - \psi_i||_{\infty} < \frac{\varepsilon}{2|I|}$. Therefore, on M we have the pointwise inequalities $0 \leq (1 - \varepsilon)\varphi_i < \psi_i < (1 - \varepsilon)\varphi_i + \varepsilon/|I|$, and so $1 - \varepsilon < \sum_{i \in I} \psi_i < 1$. Fix $z \in u(M)$ and define $w_z := \sum_{i \in I} \psi_i(\cdot)(z_i - z) + z = \sum_{i \in I} \psi_i(\cdot)z_i + (1 - \sum_{i \in I} \psi_i(\cdot))z$. Thus, $w_z \in E$, $w_z(M) \subset \operatorname{co}(u(M))$. We next show that $(w_z - v)(M) \subset W_0$. For every

 $\begin{aligned} \xi \in M, & \text{we have } (w_z - v)(\xi) = \sum_{i \in I} (\psi_i(\xi) - \varphi_i(\xi)) z_i + (1 - \sum_{i \in I} \psi_i(\xi)) z = \\ \sum_{i \in I} [\psi_i(\xi) - (1 - \varepsilon)\varphi_i(\xi)] z_i - \varepsilon \sum_{i \in I} \varphi_i(\xi) z_i + (1 - \sum_{i \in I} \psi_i(\xi)) z \in \sum_{i \in I} [\psi_i(\xi) - (1 - \varepsilon)\varphi_i(\xi)] A - \varepsilon A + (1 - \sum_{i \in I} \psi_i(\xi)) A = \varepsilon A - \varepsilon A \subset 2^{-1} (W_0 - W_0) = W_0, & \text{since the sets } A, W_0 \text{ are convex and } W_0 \text{ is balanced. As } (w_z - v)(M) \subset W_0, \text{ we get } (u - w_z)(M) \subset (u - v)(M) + (v - w_z)(M) \subset W_0 - W_0 = 2W_0 \subset W. \text{ We need to consider two cases:} \end{aligned}$

(i) If $0 \notin u(M)$, then $u^{-1}(Z \setminus \{0\}) = M \supset \text{supp } w_z$, and so $u_W \coloneqq w_z$ satisfies all required properties.

(ii) If $0 \in u(M)$, since $(1 - \varepsilon)\varphi_i < \psi_i \forall i \in I$ and M is compact, it follows that $\exists \delta \in (0, 1)$, such that $(1 - \varepsilon)\varphi_i < (1 - \delta)\psi_i \forall i \in I$ on M. Since $\operatorname{supp} v \subset u^{-1}(Z \setminus \{0\})$, Lemma 1 shows that $\exists \omega \in C_{\mathbf{R}}(T) \otimes C_{\mathbf{R}}(S)$, with $0 \leq \omega < 1$, $\omega(\xi) > 1 - \delta \forall \xi \in \operatorname{supp} v$, $\operatorname{supp} \omega \subset u^{-1}(Z \setminus \{0\})$. Now define $u_W \coloneqq \omega \cdot w_z \in (C_{\Gamma}(T) \otimes X) \otimes (C_{\Gamma}(S) \otimes Y)$. Thus, $u_W(M) \subset \omega(M) \cdot w_z(M) \subset [0, 1) \cdot \operatorname{co}(u(M)) \subset \operatorname{co}(u(M))$, $\operatorname{supp} u_W \subset \operatorname{supp} \omega \subset u^{-1}(Z \setminus \{0\})$. It remains to prove that $(u - u_W)(M) \subset W$. Fix $\xi \in M$. There are two subcases:

(a) If $\xi \in \operatorname{supp} v$, then we clearly have on M the pointwise inequalities $(1 - \varepsilon)\varphi_i(\xi) < (1 - \delta)\psi_i(\xi) < \omega(\xi)((1 - \varepsilon)\varphi_i(\xi) + \varepsilon/|I|) \quad \forall i \in I$, and so $\omega(\xi) = \omega(\xi) \sum_{i \in I} ((1 - \varepsilon)\varphi_i(\xi) + \varepsilon/|I|) > (1 - \varepsilon) \sum_{i \in I} \varphi_i(\xi) = 1 - \varepsilon$. Hence, $(u_W - v)(\xi) = (\omega w_z - v)(\xi) = \sum_{i \in I} [\omega(\xi)\psi_i(\xi) - (1 - \varepsilon)\varphi_i(\xi)]z_i - \varepsilon \sum_{i \in I} \varphi_i(\xi)z_i + \omega(\xi)(1 - \sum_{i \in I}\psi_i(\xi))z \in \sum_{i \in I} [\omega(\xi)\psi_i(\xi) - (1 - \varepsilon)\varphi_i(\xi)]A - \varepsilon A + \omega(\xi)(1 - \sum_{i \in I}\psi_i(\xi))A = [\omega(\xi) - (1 - \varepsilon)]A - \varepsilon A - \varepsilon A - \varepsilon A - \varepsilon A - \varepsilon A^{-2} - (W_0 - W_0) = W_0$, and so $(u - u_W)(\xi) = (u - v)(\xi) + (v - u_W)(\xi) \in W_0 - W_0 = 2W_0 \subset W$. We conclude that $(u - u_W)$ (supp $v) \subset W$.

(b) If $\xi \in M \setminus \sup v$, then it is clear that $u(\xi) = (u - v)(\xi) \in W_0$, $u_W(\xi) = \omega(\xi)(w_z - v)(\xi) \in \omega(\xi) W_0 \subset W_0$. Thus, $(u - u_W)(\xi) \in W_0 - W_0 = 2W_0 \subset W$. Hence, $(u - u_W)(M \setminus \sup v) \subset W$.

From (a) and (b), it follows that $(u - u_W)(M) \subset W$. Therefore, u_W satisfies all required properties. \Box

In the particular case $X = Y = \Gamma$ we get

Corollary 1. For every function $u \in C_{\Gamma}(T \times S)$, there is a sequence $(u_n)_{n \ge 1} \subset C_{\Gamma}(T) \otimes C_{\Gamma}(S)$, such that $u_n \xrightarrow{u} u$ and

$$u_n(T \times S) \subset \operatorname{co}(u(T \times S)), \quad \operatorname{supp} u_n \subset u^{-1}(\Gamma \setminus \{0\}) \ \forall n \in \mathbb{N}^*.$$

2.2. The case of $E_0 \subset C_0(T, X) \otimes C_0(S, Y) \subset C_\infty(M, Z)$

Theorem 3. If $u \in C_{\infty}(M, Z)$, then for all $W \in \mathscr{V}_{Z}(0)$ and compact $K \subset M$, there exists an approximant $u_{W,K} \in E_0$, such that

$$(u - u_{W,K})(M) \subset W, \quad u_{W,K}(M) \subset \operatorname{co}(u(M) \cup \{0\}),$$
$$u_{W,K}(K) \subset \operatorname{co}(u(M)), \quad \operatorname{supp} u_{W,K} \subset u^{-1}(Z \setminus \{0\}).$$

Proof. We can assume that $u \neq 0$, that is $\exists \xi_0 \in M$, with $u(\xi_0) \neq 0$. Fix $W \in \mathscr{V}_Z(0), K$ compact in M and set F := K if $0 \notin u(K)$, and $F := \{\xi_0\}$ if $0 \in u(K)$. Since $0 \notin u(F)$ and u(F) compact, $\exists W_0 \in \mathscr{V}_Z(0)$, such that $W_0 \subset W$, W_0 open and convex and $u(F) \cap W_0 = \emptyset$, that is $F \subset u^{-1}(Z \setminus W_0)$. For every $A \subset M$, set $A_T := \pi_1(A)$, $A_S := \pi_2(A)$, $A_\pi := A_T \times A_S$. For $H := u^{-1}(Z \setminus W_0)$, $D := u^{-1}(Z \setminus 2^{-1} \overline{W_0})$, $L := u^{-1}(Z \setminus 2^{-1} W_0)$, we have $F \subset H_\pi \subset D_\pi \subset L_\pi \subset M$, H_π and L_π are compact, D_π is open. Since $L_\pi = L_T \times L_S$ and $u|_{L_\pi} \in C_Z(L_\pi)$, by Theorem 2, $\exists v = \sum_{i \in I} a_i \otimes b_i \in C_X(L_T) \otimes C_Y(L_S)$, such that $(u - v)(L_\pi) \subset W_0, v(L_\pi) \subset co(u(L_\pi))$ and $\sup v \subset L_\pi \cap u^{-1}(Z \setminus \{0\})$. Since H_T , L_T are compact, D_T is open and $H_T \subset D_T \subset L_T \subset T$, by Urysohn's lemma, $\exists \varphi : T \to [0, 1]$ continuous, with $\varphi|_{H_T} \equiv 1$, $\sup p \varphi \subset D_T$. Similarly, $\exists \psi : S \to [0, 1]$ continuous, such that $\psi|_{H_S} \equiv 1$, $\sup p \psi \subset D_S$. Define $\omega := \varphi \otimes \psi : M \to [0, 1]$. Hence, $\omega|_{H_\pi} \equiv 1$ and $\sup p \omega \subset D_\pi$. Finally, define the function

$$w: M \to Z, \ w(\xi) = \begin{cases} (\omega v)(\xi) & \text{if } \xi \in L_{\pi}, \\ 0 & \text{if } \xi \in M \backslash L_{\pi}. \end{cases}$$

Obviously, $\sup w \subset \sup v \subset u^{-1}(Z \setminus \{0\})$, $w_{|_{H_{\pi}}} = v_{|_{H_{\pi}}}$, $w(F) = v(F) \subset co(u(M))$, $w(M) \subset \omega(L_{\pi}) \cdot v(L_{\pi}) \cup \{0\} \subset [0, 1] \cdot co(u(M)) \subset co(u(M) \cup \{0\})$ and $w \in E_0$. We next show that $(u - w)(M) \subset W_0$. We clearly have

$$(u-w)(M) = (u-w)(H_{\pi}) \cup (u-w)(L_{\pi}\backslash H_{\pi}) \cup (u-w)(M\backslash L_{\pi}).$$

But $(u-w)(H_{\pi}) = (u-v)(H_{\pi}) \subset W_0$ and $(u-w)(M \setminus L_{\pi}) = u(M \setminus L_{\pi}) \subset u(M \setminus L) \subset 2^{-1}W_0 \subset W_0$. For $\xi \in L_{\pi} \setminus H_{\pi}, (u-w)(\xi) = (1-\omega(\xi))u(\xi) + \omega(\xi)(u-v)(\xi) \in (1-\omega(\xi))W_0 + \omega(\xi)W_0 = W_0$. Hence, $(u-w)(M) \subset W_0 \subset W$. If $F \neq K$, then $0 \in u(K)$, and so $w(K) \subset w(M) \subset \operatorname{co}(u(M) \cup \{0\}) = \operatorname{co}(u(M))$. We conclude that $u_{W,K} := w$ satisfies all required properties.

In the particular case $X = Y = \Gamma$ we get

Corollary 2. If $u \in C_{\infty}(T \times S, \Gamma)$, then for every compact $K \subset M$, there is a sequence $(u_n)_{n \ge 1} \subset C_0(T, \Gamma) \otimes C_0(S, \Gamma)$, such that $u_n \xrightarrow{u.} u$ and $u_n(T \times S) \subset \operatorname{co}(u(T \times S) \cup \{0\}), \quad u_n(K) \subset \operatorname{co}(u(T \times S)),$ $\operatorname{supp} u_n \subset u^{-1}(\Gamma \setminus \{0\}) \forall n \in \mathbb{N}^*.$

2.3. An application: the density of $C_0(T, X) \otimes C_0(S, Y)$ in $C_0(M, Z)$ with respect to the inductive limit topology

Theorem 4. If $u \in C_0(M, Z)$, then for every $V \in \mathscr{V}_{C_0(M,Z)}(0)$ with respect to the inductive limit topology, there exists $u_V \in E_0$, such that

$$u - u_V \in V$$
, $u_V(M) \subset \operatorname{co}(u(M))$, $\operatorname{supp} u_V \subset u^{-1}(Z \setminus \{0\})$.

Proof. We can assume that $0 \in u(M)$, since otherwise M is compact and the conclusion is given by Theorem 2. Fix $V \in \mathscr{V}_{C_0(M,Z)}(0)$ and set K :=

supp $u, C_0(M, Z)_K := \{v \in C_0(M, Z) \mid \text{supp } v \subset K\}$. Since $V \cap C_0(M, Z)_K$ is a neighborhood of the origin in $C_0(M, Z)_K$ with respect to the uniform convergence topology, it follows that $\exists W \in \mathscr{V}_Z(0)$, with $\{v \in C_0(M, Z)_K \mid v(M) \subset W\} \subset V \cap C_0(M, Z)_K$. Now Theorem 3 shows that $\exists v \in E_0$, such that $(u - v)(M) \subset W, v(M) \subset \operatorname{co}(u(M) \cup \{0\}) = \operatorname{co}(u(M))$, $\operatorname{supp} v \subset u^{-1}(Z \setminus \{0\}) \subset K$. We thus get $u - v \in C_0(M, Z)_K$, $(u - v)(M) \subset W$, and so $u - v \in V$. Hence, $u_V := v$ satisfies all required properties. \Box

Corollary 3. E_0 , and consequently $C_0(T, X) \otimes C_0(S, Y)$, is dense in $C_0(M, Z)$ with respect to the inductive limit topology. Moreover, if X and Y are metrizable, then this density is sequential.

References

- M. Chao-Lin, Sur l'approximation uniforme des fonctions continues, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985) 349–350.
- [2] S. Machado, On Bishop's generalization of the Weierstrass–Stone theorem, Indag. Math. 39 (1977) 218–224.
- [3] J.B. Prolla, Approximation of Vector Valued Functions, North-Holland Publishing Co., Amsterdam, New York, Oxford, 1977.
- [4] J.B. Prolla, Uniform approximation: the non-locally convex case, Rend. Circ. Mat. Palermo(2) 42 (1993) 93–105.
- [5] J.B. Prolla, On the Weierstrass-Stone theorem, J. Approx. Theory 78 (1994) 299-313.
- [6] A.H. Shuchat, Approximation of vector-valued continuous functions, Proc. Amer. Math. Soc. 31 (1972) 97–103.
- [7] V. Timofte, Special uniform approximations of continuous vector-valued functions. Part I: approximations of functions from $C_X(T)$, J. Approx. Theory 119 (2002) 291–299.